The G protein-coupled oestrogen receptor GPER in health and disease: an update

Nat Rev Endocrinol. 2023 Jul;19(7):407-424. doi: 10.1038/s41574-023-00822-7. Epub 2023 May 16.

Abstract

Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Breast Neoplasms* / drug therapy
  • Estrogens / metabolism
  • Estrogens / therapeutic use
  • Female
  • GTP-Binding Proteins / metabolism
  • GTP-Binding Proteins / therapeutic use
  • Humans
  • Receptors, Estrogen* / metabolism
  • Receptors, Estrogen* / therapeutic use
  • Receptors, G-Protein-Coupled / metabolism

Substances

  • Estrogens
  • GTP-Binding Proteins
  • Receptors, Estrogen
  • Receptors, G-Protein-Coupled
  • ESR1 protein, human
  • ESR2 protein, human