Rashba Band Splitting and Bulk Photovoltaic Effect Induced by Halogen Bonds in Hybrid Layered Perovskites

Angew Chem Int Ed Engl. 2023 Jul 17;62(29):e202304486. doi: 10.1002/anie.202304486. Epub 2023 Jun 12.

Abstract

Non-covalent interactions play an essential role in directing the self-assembly of hybrid organic-inorganic crystals. In hybrid halide perovskites, hydrogen bonding has been the paramount non-covalent interaction. Here, we show another non-covalent interaction, namely, the halogen bond interaction, that directs a symmetry-breaking assembly in a new series of two-dimensional (2D) perovskites (ICH2 CH2 NH3 )2 (CH3 NH3 )n-1 Pbn I3n+1 (n is the layer thickness, n=1-4). Structural analysis shows that the halogen bond strength varies with the layer thickness. For the odd number (n=1, 3) layered perovskites, stronger halogen interaction leads to centrosymmetric structures, whereas for the n=2 layered perovskites, weaker halogen bonds result in non-centrosymmetric structures. Transient reflection spectroscopy shows a suppressed radiative recombination rate (k2 ≈0) and prolonged spin lifetime for n=2 structure, suggesting an enhanced Rashba band splitting effect. The structural asymmetry is further confirmed with a reversible bulk photovoltaic effect. Our work provides a new design strategy to enable hybrid perovskites with emerging properties and functionalities associated with structural asymmetry.

Keywords: Bulk Photovoltaic Effect; Layered Perovskite; Rashba Band Splitting; Structure-Property Relationship; Symmetry Breaking.