Electrophilic Si-H Activation by Acetonitrilo Benzo[h]quinoline Iridacycles: Influence of Electronic Effects in Catalysis

Chemistry. 2023 Aug 1;29(43):e202300811. doi: 10.1002/chem.202300811. Epub 2023 Jun 26.

Abstract

The performance of six newly synthesized benzo[h]quinoline-derived acetonitrilo pentamethylcyclopentadienyl iridium(III) tetrakis(3,5-bis-trifluoromethylphenyl)borate salts bearing different substituents -X (-OMe, -H, -Cl, -Br, -NO2 and -(NO2 )2 ) on the heterochelating ligand were evaluated in the dehydro-O-silylation of benzyl alcohol and the monohydrosilylation of 4-methoxybenzonitrile by Et3 SiH, two reactions involving the electrophilic activation of the Si-H bond. The benchmark shows a direct dependence of the catalytic efficiency with the electronic effect of -X, which is confirmed by theoretical assessment of the intrinsic silylicities Π of hydridoiridium(III)-silylium adducts and by the theoretical evaluation of the propensity of hydridospecies to transfer the hydrido ligand to the activated substrate. The revisited analysis of the Ir-Si-H interactions shows that the most cohesive bond in hydridoiridium(III)-silylium adducts is the Ir-H one, while the Ir-Si is a weak donor-acceptor dative bond. The Si…H interaction in all the cases is noncovalent in nature and dominated by electrostatics confirming the heterolytic cleavage of the hydrosilane's Si-H bond in this key catalytically relevant species.

Keywords: density functional theory; hydrosilylation; iridium; metallacycle; structure reactivity.