Cannabidiol alleviates neuroinflammation and attenuates neuropathic pain via targeting FKBP5

Brain Behav Immun. 2023 Jul:111:365-375. doi: 10.1016/j.bbi.2023.05.008. Epub 2023 May 15.

Abstract

Microglia is a heterogeneous population that mediates neuroinflammation in the central nervous system (CNS) and plays a crucial role in developing neuropathic pain. FKBP5 facilitates the assembly of the IκB kinase (IKK) complex for the activation of NF-κB, which arises as a novel target for treating neuropathic pain. In this study, cannabidiol (CBD), a main active component of Cannabis, was identified as an antagonist of FKBP5. In vitro protein intrinsic fluorescence titration showed that CBD directly bound to FKBP5. Cellular thermal shift assay (CETSA) indicated that CBD binding increased the FKBP5 stability, which implies that FKBP5 is the endogenous target of CBD. CBD was found to inhibit the assembly of the IKK complex and the activation of NF-κB, therefore blocking LPS-induced NF-κB downstream pro-inflammatory factors NO, IL-1β, IL-6 and TNF-α. Stern-Volmer analysis and protein thermal shift assay revealed that tyrosine 113 (Y113) of FKBP5 was critical for FKBP5 interacting with CBD, which is consistent with in silico molecular docking simulation. FKBP5 Y113 mutation (Y113A) alleviated the effect of CBD inhibiting LPS-induced pro-inflammatory factors overproduction. Furthermore, systemic administration of CBD inhibited chronic constriction injury (CCI)-induced microglia activation and FKBP5 overexpression in lumbar spinal cord dorsal horn. These data imply that FKBP5 is an endogenous target of CBD.

Keywords: Cannabidiol; FKBP5; NF-κB; Neuroinflammation; Neuropathic pain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cannabidiol* / pharmacology
  • Lipopolysaccharides / pharmacology
  • Molecular Docking Simulation
  • NF-kappa B / metabolism
  • Neuralgia* / drug therapy
  • Neuralgia* / metabolism
  • Neuroinflammatory Diseases
  • Rats
  • Rats, Sprague-Dawley
  • Tacrolimus Binding Proteins* / antagonists & inhibitors

Substances

  • Cannabidiol
  • Lipopolysaccharides
  • NF-kappa B
  • Tacrolimus Binding Proteins