OMOP common data model (CDM) is designed for analyzing large clinical data and building cohorts for medical research, which requires Extract-Transform-Load processes (ETL) of local heterogeneous medical data. We present a concept for developing and evaluating a modularized metadata-driven ETL process, which can transform data into OMOP CDM regardless of 1) the source data format, 2) its versions and 3) context of use.
Keywords: ETL; Metadata; OMOP CDM; data harmonization; interoperability.