Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.
© 2023 Schwerdtner et al.