Background: A long-standing question is why essential tremor often responds to non-intoxicating amounts of alcohol. Blood flow imaging and high-density electroencephalography have indicated that alcohol acts on tremor within the cerebellum. As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol levels, we wondered whether these receptors mediate alcohol's anti-tremor effect and, moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the cerebellum, is required.
Methods: We tested the hypotheses that low-dose alcohol will suppress harmaline-induced tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic GABAA receptors, we similarly assessed this compound. The harmaline mouse model of essential tremor was utilized to generate tremor, measured as a percentage of motion power in the tremor bandwidth (9-16 Hz) divided by background motion power at 0.25-32 Hz.
Results: Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that do not impair performance in a sensitive psychomotor task, reduced harmaline tremor compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in littermates lacking the δ or the α6 GABAA receptor subunit.
Discussion: As cerebellar granule cells are the predominant brain site intensely expressing GABAA receptors containing both α6 and δ subunits, these findings suggest that this is where alcohol acts to suppress tremor. It is anticipated that medications designed specifically to target α6βδ-containing GABAA receptors may be effective and well-tolerated for treating essential tremor.
Highlights: How does alcohol temporarily ameliorate essential tremor? This study with a mouse model found that two specific kinds of GABA receptor subunits were needed for alcohol to work. As receptors with both these subunits are found mainly in cerebellum, this work suggests this is where alcohol acts to suppress tremor.
Keywords: alcohol; cerebellum; harmaline; receptor; tremor.
Copyright: © 2023 The Author(s).