DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) participates in transcription-coupled repair of ICLs in human cells. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair. UVSSA is required for transcription-coupled repair of a single ICL in a fluorescence-based reporter assay. UVSSA localizes to chromatin following ICL damage, and interacts with transcribing Pol II, CSA, CSB, and TFIIH. Specifically, UVSSA interaction with TFIIH is required for ICL repair. Finally, UVSSA expression positively correlates with ICL chemotherapy resistance in human cancer cell lines. Our data strongly suggest that transcription-coupled ICL repair (TC-ICR) is a bona fide ICL repair mechanism that contributes to crosslinker drug resistance independently of replication-coupled ICL repair.