As a functional textile, the directional water transport textile has been widely used in daily life due to the ability of excellent moisture absorption and quick drying. However, it is still a great challenge to construct a textile that ensures water to transport rapidly from the skin to the outer environment (positive direction) and prevents the skin from being rewetted effectively in the reverse direction. Herein, this study aims to improve the ability of the hydrophobic layer in moisture management using melt electrowriting (MEW) to fabricate gradient pore structures precisely. The pore sizes in different layers can be tailored by altering the collector speed, and thus, the configuration of the pore structure dominates the process of water transportation. The unique multilayered structure achieves the directional water transport effects by improving the permeability with large pores and hindering the transport with small pores in the reverse direction. Meanwhile, we use solution electrospinning (SE) technology to fabricate the hydrophilic layer. The constructed composite membranes exhibit excellent performance with a one-way transport index R up to 1281% and a desired overall moisture management capacity (OMMC) of 0.87. This research outlines an approach to fabricating Janus membranes to enhance its directional water transport performance, facilitating the MEW technique to be applied on the more expanded field for directional water transport textiles.