Photon-counting versus Dual-Source CT of Congenital Heart Defects in Neonates and Infants: Initial Experience

Radiology. 2023 Jun;307(5):e223088. doi: 10.1148/radiol.223088. Epub 2023 May 23.

Abstract

Background Photon-counting CT (PCCT) has been shown to improve cardiovascular CT imaging in adults. Data in neonates, infants, and young children under the age of 3 years are missing. Purpose To compare image quality and radiation dose of ultrahigh-pitch PCCT with that of ultrahigh-pitch dual-source CT (DSCT) in children suspected of having congenital heart defects. Materials and Methods This is a prospective analysis of existing clinical CT studies in children suspected of having congenital heart defects who underwent contrast-enhanced PCCT or DSCT in the heart and thoracic aorta between January 2019 and October 2022. CT dose index and dose-length product were used to calculate effective radiation dose. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by standardized region-of-interest analysis. SNR and CNR dose ratios were calculated. Visual image quality was assessed by four independent readers on a five-point scale: 5, excellent or absent; 4, good or minimal; 3, moderate; 2, limited or substantial; and 1, poor or massive. Results Contrast-enhanced PCCT (n = 30) or DSCT (n = 84) was performed in 113 children (55 female and 58 male participants; median age, 66 days [IQR, 15-270]; median height, 56 cm [IQR, 52-67]; and median weight, 4.5 kg [IQR, 3.4-7.1]). A diagnostic image quality score of at least 3 was obtained in 29 of 30 (97%) with PCCT versus 65 of 84 (77%) with DSCT. Mean overall image quality ratings were higher for PCCT versus DSCT (4.17 vs 3.16, respectively; P < .001). SNR and CNR were higher for PCCT versus DSCT with SNR (46.3 ± 16.3 vs 29.9 ± 15.3, respectively; P = .007) and CNR (62.0 ± 50.3 vs 37.2 ± 20.8, respectively; P = .001). Mean effective radiation doses were similar for PCCT and DSCT (0.50 mSv vs 0.52 mSv; P = .47). Conclusion At a similar radiation dose, PCCT offers a higher SNR and CNR and thus better cardiovascular imaging quality than DSCT in children suspected of having cardiac heart defects. © RSNA, 2023.

MeSH terms

  • Adult
  • Child
  • Child, Preschool
  • Female
  • Heart Defects, Congenital* / diagnostic imaging
  • Humans
  • Infant
  • Infant, Newborn
  • Lung
  • Male
  • Radiation Dosage
  • Signal-To-Noise Ratio
  • Thorax
  • Tomography, X-Ray Computed* / methods