A case-based reasoning system for neonatal survival and LOS prediction in neonatal intensive care units: a development and validation study

Sci Rep. 2023 May 24;13(1):8421. doi: 10.1038/s41598-023-35333-y.

Abstract

Early prediction of neonates' survival and Length of Stay (LOS) in Neonatal Intensive Care Units (NICU) is effective in decision-making. We developed an intelligent system to predict neonatal survival and LOS using the "Case-Based Reasoning" (CBR) method. We developed a web-based CBR system based on K-Nearest Neighborhood (KNN) on 1682 neonates and 17 variables for mortality and 13 variables for LOS and evaluated the system with 336 retrospectively collected data. We implemented the system in a NICU to externally validate the system and evaluate the system prediction acceptability and usability. Our internal validation on the balanced case base showed high accuracy (97.02%), and F-score (0.984) for survival prediction. The root Mean Square Error (RMSE) for LOS was 4.78 days. External validation on the balanced case base indicated high accuracy (98.91%), and F-score (0.993) to predict survival. RMSE for LOS was 3.27 days. Usability evaluation showed that more than half of the issues identified were related to appearance and rated as a low priority to be fixed. Acceptability assessment showed a high acceptance and confidence in responses. The usability score (80.71) indicated high system usability for neonatologists. This system is available at http://neonatalcdss.ir/ . Positive results of our system in terms of performance, acceptability, and usability indicated this system can be used to improve neonatal care.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Data Collection
  • Humans
  • Infant, Newborn
  • Intensive Care Units, Neonatal*
  • Length of Stay
  • Problem Solving*
  • Retrospective Studies