Humans spend a large proportion of time participating in social interactions. The ability to accurately detect and respond to human interactions is vital for social functioning, from early childhood through to older adulthood. This detection ability arguably relies on integrating sensory information from the interactants. Within the visual modality, directional information from a person's eyes, head, and body are integrated to inform where another person is looking and who they are interacting with. To date, social cue integration research has focused largely on the perception of isolated individuals. Across two experiments, we investigated whether observers integrate body information with head information when determining whether two people are interacting, and manipulated frame of reference (one of the interactants facing observer vs. facing away from observer) and the eye-region visibility of the interactant. Results demonstrate that individuals integrate information from the body with head information when perceiving dyadic interactions, and that integration is influenced by the frame of reference and visibility of the eye-region. Interestingly, self-reported autistics traits were associated with a stronger influence of body information on interaction perception, but only when the eye-region was visible. This study investigated the recognition of dyadic interactions using whole-body stimuli while manipulating eye visibility and frame of reference, and provides crucial insights into social cue integration, as well as how autistic traits affect cue integration, during perception of social interactions.
Keywords: Social interaction; autism; cue integration; perception.