The current experiment was conducted to investigate the effect of individual or combination of dietary betaine (Bet) and glycine (Gly) on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress (HS) conditions. A total of four hundred twenty 21-d-old Ross 308 broiler chickens were randomly allotted to 1 of 5 dietary treatments with 7 replicates. Birds in treatment 1 were raised under the thermoneutral condition (TN; 23 ± 0.6°C). Birds in other 4 treatment groups were subjected to a cyclic HS by exposing them to 32 ± 0.9°C for 8 h/d (from 09:00 to 17:00 h) and 28 ± 1.2°C for the remaining time for 14 d. Birds were fed a basal diet in TN condition (TN-C) and one group in HS conditions (HS-C), whereas other birds raised under HS conditions were fed the basal diet supplemented with 0.20% Bet (HS-Bet), 0.79% Gly (HS-Gly), or their combination (0.20% Bet + 0.79% Gly; HS-Bet+Gly). Results indicated that birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had higher (P < 0.05) final BW and BW gain, but lower (P < 0.05) feed conversion ratio (FCR) than those in HS-C treatment. However, values for improved final BW, BW gain, and FCR by dietary treatments were lower (P < 0.05) than those measured in TN-C treatment. Under HS conditions, birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had lower (P < 0.05) heterophil to lymphocyte ratio than those in HS-C treatment. Birds in HS-Gly or HS-Bet+Gly treatment had higher (P < 0.05) villus height and goblet cell number than birds in HS-C treatment. Intestinal permeability was higher (P < 0.05) in all HS-treatment groups than in TN-C treatment, but it was not affected by dietary treatment. In conclusion, individual supplementation of 0.20% Bet or 0.79% Gly in diets alleviates the negative effect of HS in broiler chickens. However, the synergistic effect of the combination of 0.20% Bet and 0.79% Gly in broiler diets seems lower than expected.
Keywords: betaine; broiler chicken; glycine; growth performance; heat stress.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.