In the current research, an aqueous extract of Terminalia chebula fruit was used to produce silver nanoparticles (Ag NPs) in a sustainable manner. UV-visible spectrophotometry, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to characterize the synthesized nanoparticles. Synthesized Ag NPs were detected since their greatest absorption peak was seen at 460 nm. The synthesized Ag NPs were spherical and had an average size of about 50 nm, with agglomerated structures, as shown via SEM and TEM analyses. The biological activities of the synthesized Ag NPs were evaluated in terms of their antibacterial and antioxidant properties, as well as protein leakage and time-kill kinetics assays. The results suggest that the green synthesized Ag NPs possess significant antibacterial and antioxidant activities, making them a promising candidate for therapeutic applications. Furthermore, the study also evaluated the potential toxicological effects of the Ag NPs using zebrafish embryos as a model organism. The findings indicate that the synthesized Ag NPs did not induce any significant toxic effects on zebrafish embryos, further supporting their potential as therapeutic agents. In conclusion, the environmentally friendly production of Ag NPs using the extract from T. chebula is a promising strategy for discovering novel therapeutic agents with prospective uses in biomedicine.
Keywords: Terminalia chebula; antibacterial; antioxidant agent; embryonic toxicology; mechanism; silver nanoparticles.