The Autoinducer N-Octanoyl-L-Homoserine Lactone (C8-HSL) as a Potential Adjuvant in Vaccine Formulations

Pharmaceuticals (Basel). 2023 May 8;16(5):713. doi: 10.3390/ph16050713.

Abstract

Autoinducers AI-1 and AI-2 play an important role in bacterial quorum sensing (QS), a form of chemical communication between bacteria. The autoinducer N-octanoyl-L-Homoserinehomoserine lactone (C8-HSL) serves as a major inter- and intraspecies communicator or 'signal', mainly for Gram-negative bacteria. C8-HSL is proposed to have immunogenic properties. The aim of this project is to evaluate C8-HSL as a potential vaccine adjuvant. For this purpose, a microparticulate formulation was developed. The C8-HSL microparticles (MPs) were formulated by a water/oil/water (W/O/W) double-emulsion solvent evaporation method using PLGA (poly (lactic-co-glycolic acid)) polymer. We tested C8-HSL MPs with two spray-dried bovine serum albumin (BSA)-encapsulated bacterial antigens: colonization factor antigen I (CFA/I) from Escherichia coli (E. coli.) and the inactive protective antigen (PA) from Bacillus anthracis (B. anthracis). We formulated and tested C8-HSL MP to determine its immunogenicity potential and its ability to serve as an adjuvant with particulate vaccine formulations. An in vitro immunogenicity assessment was performed using Griess's assay, which indirectly measures the nitric oxide radical (NOˑ) released by dendritic cells (DCs). The C8-HSL MP adjuvant was compared with FDA-approved adjuvants to determine its immunogenicity potential. C8-HSL MP was combined with particulate vaccines for measles, Zika and the marketed influenza vaccine. The cytotoxicity study showed that MPs were non-cytotoxic toward DCs. Griess's assay showed a comparable release of NOˑ from DCs when exposed to CFA and PA bacterial antigens. Nitric oxide radical (NOˑ) release was significantly higher when C8-HSL MPs were combined with particulate vaccines for measles and Zika. C8-HSL MPs showed immunostimulatory potential when combined with the influenza vaccine. The results showed that C8-HSL MPs were as immunogenic as FDA-approved adjuvants such as alum, MF59, and CpG. This proof-of-concept study showed that C8-HSL MP displayed adjuvant potential when combined with several particulate vaccines, indicating that C8-HSL MPs can increase the immunogenicity of both bacterial and viral vaccines.

Keywords: C8-HSL microparticle; adjuvant; autoinducers; immunogenicity; vaccines.