Porcine epidemic diarrhea (PED) is a highly contagious disease that has been reported annually in several Asian countries, causing significant economic losses to the swine livestock industry. Although vaccines against the porcine epidemic diarrhea virus (PEDV) are available, their efficacy remains questionable due to limitations such as viral genome mutation and insufficient intestinal mucosal immunity. Therefore, the development of a safe and effective vaccine is necessary. In this study, a virulent Korean strain of PEDV, CKT-7, was isolated from a piglet with severe diarrhea, and six different conditions were employed for serial passage of the strain in a cell culture system to generate effective live attenuated vaccine (LAV) candidates. The characteristics of these strains were analyzed in vitro and in vivo, and the CKT-7 N strain was identified as the most effective vaccine candidate, with a viral titer peak of 8.67 ± 0.29 log10TCID50/mL, and no mortality or diarrhea symptoms were observed in five-day-old piglets. These results indicate that LAV candidates can be generated through serial passage with different culture conditions and provide valuable insights into the development of a highly effective LAV against PEDV.
Keywords: live attenuated vaccine; pathogenicity; porcine epidemic diarrhea virus.