Joint radial trajectory correction for accelerated T2 * mapping on an MR-Linac

Med Phys. 2023 Nov;50(11):7027-7038. doi: 10.1002/mp.16479. Epub 2023 May 27.

Abstract

Background: T2 * mapping can characterize tumor hypoxia, which may be associated with resistance to therapy. Acquiring T2 * maps during MR-guided radiotherapy could inform treatment adaptation by, for example, escalating the dose to resistant sub-volumes.

Purpose: The purpose of this work is to demonstrate the feasibility of the accelerated T2 * mapping technique using model-based image reconstruction with integrated trajectory auto-correction (TrACR) for MR-guided radiotherapy on an MR-Linear accelerator (MR-Linac).

Materials and methods: The proposed method was validated in a numerical phantom, where two T2 * mapping approaches (sequential and joint) were compared for different noise levels (0,0.1,0.5,1) and gradient delays ([1, -1] and [1, -2] in units of dwell time for x- and y-axis, respectively). Fully sampled k-space was retrospectively undersampled using two different undersampling patterns. Root mean square errors (RMSEs) were calculated between reconstructed T2 * maps and ground truth. In vivo data was acquired twice weekly in one prostate and one head and neck cancer patient undergoing treatment on a 1.5 T MR-Linac. Data were retrospectively undersampled and T2 * maps reconstructed, with and without trajectory corrections were compared.

Results: Numerical simulations demonstrated that, for all noise levels, T2 * maps reconstructed with a joint approach demonstrated less error compared to an uncorrected and sequential approach. For a noise level of 0.1, uniform undersampling and gradient delay [1, -1] (in units of dwell time for x- and y-axis, respectively), RMSEs for sequential and joint approaches were 13.01 and 9.32 ms, respectively, which reduced to 10.92 and 5.89 ms for a gradient delay of [1, 2]. Similarly, for alternate undersampling and gradient delay [1, -1], RMSEs for sequential and joint approaches were 9.80 and 8.90 ms, respectively, which reduced to 9.10 and 5.40 ms for gradient delay [1, 2]. For in vivo data, T2 * maps reconstructed with our proposed approach resulted in less artifacts and improved visual appearance compared to the uncorrected approach. For both prostate and head and neck cancer patients, T2 * maps reconstructed from different treatment fractions showed changes within the planning target volume (PTV).

Conclusion: Using the proposed approach, a retrospective data-driven gradient delay correction can be performed, which is particularly relevant for hybrid devices, where full information on the machine configuration is not available for image reconstruction. T2 * maps were acquired in under 5 min and can be integrated into MR-guided radiotherapy treatment workflows, which minimizes patient burden and leaves time for additional imaging for online adaptive radiotherapy on an MR-Linac.

Keywords: MR-Linac; T2* mapping; gradient delay correction; hypoxia imaging.

MeSH terms

  • Head and Neck Neoplasms* / diagnostic imaging
  • Head and Neck Neoplasms* / radiotherapy
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging*
  • Male
  • Particle Accelerators
  • Phantoms, Imaging
  • Retrospective Studies