Deep generative models, which can approximate complex data distribution from large datasets, are widely used in biological dataset analysis. In particular, they can identify and unravel hidden traits encoded within a complicated nucleotide sequence, allowing us to design genetic parts with accuracy. Here, we provide a deep-learning based generic framework to design and evaluate synthetic promoters for cyanobacteria using generative models, which was in turn validated with cell-free transcription assay. We developed a deep generative model and a predictive model using a variational autoencoder and convolutional neural network, respectively. Using native promoter sequences of the model unicellular cyanobacterium Synechocystis sp. PCC 6803 as a training dataset, we generated 10 000 synthetic promoter sequences and predicted their strengths. By position weight matrix and k-mer analyses, we confirmed that our model captured a valid feature of cyanobacteria promoters from the dataset. Furthermore, critical subregion identification analysis consistently revealed the importance of the -10 box sequence motif in cyanobacteria promoters. Moreover, we validated that the generated promoter sequence can efficiently drive transcription via cell-free transcription assay. This approach, combining in silico and in vitro studies, will provide a foundation for the rapid design and validation of synthetic promoters, especially for non-model organisms.
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.