Introduction: Clinical Alzheimer's disease (AD) begins with mild cognitive impairment (MCI) and progresses to mild, moderate, or severe dementia, constituting a disease continuum that eventually leads to death. This study aimed to estimate the probabilities of transitions across those disease states.
Methods: We developed a mixed-effects multi-state Markov model to estimate the transition probabilities, adjusted for 5 baseline covariates, using the Health and Retirement Study (HRS) database. HRS surveys older adults in the United States bi-annually. Alzheimer states were defined using the modified Telephone Interview of Cognitive Status (TICS-m).
Results: A total of 11,292 AD patients were analyzed. Patients were 70.8 ± 9.0 years old, 54.9% female, and with 12.0 ± 3.3 years of education. Within 1 year from the initial state, the model estimated a higher probability of transition to the next AD state in earlier disease: 12.8% from MCI to mild AD and 5.0% from mild to moderate AD, but < 1% from moderate to severe AD. After 10 years, the probability of transition to the next state was markedly higher for all states, but still higher in earlier disease: 29.8% from MCI to mild AD, 23.5% from mild to moderate AD, and 5.7% from moderate to severe AD. Across all AD states, the probability of transition to death was < 5% after 1 year and > 15% after 10 years. Older age, fewer years of education, unemployment, and nursing home stay were associated with a higher risk of disease progression (p < 0.01).
Conclusions: This analysis shows that the risk of progression is greater in earlier AD states, increases over time, and is higher in patients who are older, with fewer years of education, unemployed, or in a nursing home at baseline. The estimated transition probabilities can provide guidance for future disease management and clinical trial design optimization, and can be used to refine existing cost-effectiveness frameworks.
Keywords: Alzheimer’s disease; Disease progression; Mixed-effects model; Multi-state Markov model; TICS-m; Transition probability.
© 2023. The Author(s).