Giant enhancement of second-harmonic generation of indium selenide on planar Au

Nanoscale. 2023 Jun 15;15(23):10125-10132. doi: 10.1039/d3nr00526g.

Abstract

Two-dimensional (2D) van der Waals layered γ-type indium selenide (γ-InSe) holds great promise for the development of ultrathin and low-energy-consumption nonlinear optical devices due to its broken inversion symmetry regardless of layer number. Nevertheless, the 2D InSe thin flakes still exhibit short light-matter interaction lengths, thus resulting in low efficiencies of nonlinear optical processes. In this work, we provide a facile 2D semiconductor-metal structure consisting of InSe thin flakes (thickness: 11-54 nm) on planar Au film, which exhibits great second-harmonic generation (SHG) enhancement by a factor of up to 1182. The SHG enhancement is attributed to the interference effect-induced strong electric field in highly absorbing InSe; meanwhile, the increase in reflectivity by Au film also plays an important role. Furthermore, the InSe thickness and excitation wavelength dependences of enhancement factors are revealed. This work provides a convenient approach to developing high-efficiency 2D nonlinear optical devices with ultrathin form.

MeSH terms

  • Electricity
  • Indium
  • Optical Devices*
  • Second Harmonic Generation Microscopy*

Substances

  • Indium