Context: Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established.
Objective: To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD.
Methods: Records of 128 patients with PPGL under follow-up at our center from January 2017 to December 2022 were screened for SCD diagnosis. For identified patients, clinical data and biological specimens were obtained, including tumor, adjacent non-tumor tissue and peripheral blood. Sanger sequencing of exons 9 and 12 of EPAS1, followed by amplicon next-generation sequencing of identified variants was performed on all samples.
Results: Four patients with both PPGL and SCD were identified. Median age at PPGL diagnosis was 28 years. Three tumors were abdominal paragangliomas and 1 was a pheochromocytoma. No germline pathogenic variants in PPGL-susceptibility genes were identified in the cohort. Genetic testing of tumor tissue detected unique EPAS1 variants in all 4 patients. Variants were not detected in the germline, and 1 variant was detected in lymph node tissue of a patient with metastatic disease.
Conclusion: We propose that somatic EPAS1 variants may be acquired through exposure to chronic hypoxia in SCD and drive PPGL development. Future work is needed to further characterize this association.
Keywords: EPAS1; neuroendocrine tumor; paraganglioma; pheochromocytoma; somatic variants.
© The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society.