Phasing out thermal power plants is vital to combatting climate change. Less attention has been given to provincial-level thermal power plants, which are implementers of the policy of phasing out backward production capacity. To improve energy efficiency and reduce negative environmental impacts, this study proposes a bottom-up cost-optimal model to explore technology-oriented low-carbon development pathways for China's provincial-level thermal power plants. Taking 16 types of thermal power technologies into consideration, this study investigates the impacts of power demand, policy implementation, and technology maturity on energy consumption, pollutant emissions, and carbon emissions of power plants. The results show that an enhanced policy combined with a reduced thermal power demand would peak carbon emissions of the power industry at approximately 4.1 GtCO2 in 2023. Meanwhile, most of the inefficient coal-fired power technologies should be eliminated by 2030. Carbon capture and storage technology should be gradually promoted in Xinjiang, Inner Mongolia, Ningxia, and Jilin after 2025. Energy-saving upgrades on 600 MW and 1000 MW ultra-supercritical technologies should be emphatically carried out in Anhui, Guangdong, and Zhejiang. By 2050, all thermal power will come from ultra-supercritical and other advanced technologies.
Keywords: Backward production capacity; Carbon capture and storage; Decarbonization; Energy efficiency; Thermal power plant.
Copyright © 2023 Elsevier Ltd. All rights reserved.