Introduction: Metabolomics analysis based on liquid chromatography-mass spectrometry (LC-MS) has been a prevalent method in the metabolic field. However, accurately quantifying all the metabolites in large metabolomics sample cohorts is challenging. The analysis efficiency is restricted by the abilities of software in many labs, and the lack of spectra for some metabolites also hinders metabolite identification.
Objectives: Develop software that performs semi-targeted metabolomics analysis with an optimized workflow to improve quantification accuracy. The software also supports web-based technologies and increases laboratory analysis efficiency. A spectral curation function is provided to promote the prosperity of homemade MS/MS spectral libraries in the metabolomics community.
Methods: MetaPro is developed based on an industrial-grade web framework and a computation-oriented MS data format to improve analysis efficiency. Algorithms from mainstream metabolomics software are integrated and optimized for more accurate quantification results. A semi-targeted analysis workflow is designed based on the concept of combining artificial judgment and algorithm inference.
Results: MetaPro supports semi-targeted analysis workflow and functions for fast QC inspection and self-made spectral library curation with easy-to-use interfaces. With curated authentic or high-quality spectra, it can improve identification accuracy using different peak identification strategies. It demonstrates practical value in analyzing large amounts of metabolomics samples.
Conclusion: We offer MetaPro as a web-based application characterized by fast batch QC inspection and credible spectral curation towards high-throughput metabolomics data. It aims to resolve the analysis difficulty in semi-targeted metabolomics.
Keywords: Database; Mass spectrometry; Metabolite identification; Metabolomics; Quality assurance; Quality control; Software; Spectral library; Web-based; Workflow.
© 2023. The Author(s).