2D PtSe2 Enabled Wireless Wearable Gas Monitoring Circuits with Distinctive Strain-Enhanced Performance

ACS Nano. 2023 Jun 27;17(12):11557-11566. doi: 10.1021/acsnano.3c01582. Epub 2023 Jun 9.

Abstract

The application of 2D materials-based flexible electronics in wearable scenarios is limited due to performance degradation under strain fields. In contrast to its negative role in existing transistors or sensors, herein, we discover a positive effect of strain to the ammonia detection in 2D PtSe2. Linear modulation of sensitivity is achieved in flexible 2D PtSe2 sensors via a customized probe station with an in situ strain loading apparatus. For trace ammonia absorption, a 300% enhancement in room-temperature sensitivity (31.67% ppm-1) and an ultralow limit of detection (50 ppb) are observed under 1/4 mm-1 curvature strain. We identify three types of strain-sensitive adsorption sites in layered PtSe2 and pinpoint that basal-plane lattice distortion contributes to better sensing performance resulting from reduced absorption energy and larger charge transfer density. Furthermore, we demonstrate state-of-the-art 2D PtSe2-based wireless wearable integrated circuits, which allow real-time gas sensing data acquisition, processing, and transmission through a Bluetooth module to user terminals. The circuits exhibit a wide detection range with a maximum sensitivity value of 0.026 V·ppm-1 and a low energy consumption below 2 mW.

Keywords: 2D materials; PtSe2; flexible gas sensor; holistic hybrid platform; strain engineering; wireless communication.