The COVID-19 virus is one of the most devastating illnesses humanity has ever faced. COVID-19 is an infection that is hard to diagnose until it has caused lung damage or blood clots. As a result, it is one of the most insidious diseases due to the lack of knowledge of its symptoms. Artificial intelligence (AI) technologies are being investigated for the early detection of COVID-19 using symptoms and chest X-ray images. Therefore, this work proposes stacking ensemble models using two types of COVID-19 datasets, symptoms and chest X-ray scans, to identify COVID-19. The first proposed model is a stacking ensemble model that is merged from the outputs of pre-trained models in the stacking: multi-layer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU). Stacking trains and evaluates the meta-learner as a support vector machine (SVM) to predict the final decision. Two datasets of COVID-19 symptoms are used to compare the first proposed model with MLP, RNN, LSTM, and GRU models. The second proposed model is a stacking ensemble model that is merged from the outputs of pre-trained DL models in the stacking: VGG16, InceptionV3, Resnet50, and DenseNet121; it uses stacking to train and evaluate the meta-learner (SVM) to identify the final prediction. Two datasets of COVID-19 chest X-ray images are used to compare the second proposed model with other DL models. The result has shown that the proposed models achieve the highest performance compared to other models for each dataset.
Keywords: COVID-19; deep learning; diagnosis; ensemble learning; machine learning; stacking; symptoms.