Methotrexate Provokes Disparate Folate Metabolism Gene Expression and Alternative Splicing in Ex Vivo Monocytes and GM-CSF- and M-CSF-Polarized Macrophages

Int J Mol Sci. 2023 Jun 1;24(11):9641. doi: 10.3390/ijms24119641.

Abstract

Macrophages constitute important immune cell targets of the antifolate methotrexate (MTX) in autoimmune diseases, including rheumatoid arthritis. Regulation of folate/MTX metabolism remains poorly understood upon pro-inflammatory (M1-type/GM-CSF-polarized) and anti-inflammatory (M2-type/M-CSF-polarized) macrophages. MTX activity strictly relies on the folylpolyglutamate synthetase (FPGS) dependent intracellular conversion and hence retention to MTX-polyglutamate (MTX-PG) forms. Here, we determined FPGS pre-mRNA splicing, FPGS enzyme activity and MTX-polyglutamylation in human monocyte-derived M1- and M2-macrophages exposed to 50 nmol/L MTX ex vivo. Moreover, RNA-sequencing analysis was used to investigate global splicing profiles and differential gene expression in monocytic and MTX-exposed macrophages. Monocytes displayed six-eight-fold higher ratios of alternatively-spliced/wild type FPGS transcripts than M1- and M2-macrophages. These ratios were inversely associated with a six-ten-fold increase in FPGS activity in M1- and M2-macrophages versus monocytes. Total MTX-PG accumulation was four-fold higher in M1- versus M2-macrophages. Differential splicing after MTX-exposure was particularly apparent in M2-macrophages for histone methylation/modification genes. MTX predominantly induced differential gene expression in M1-macrophages, involving folate metabolic pathway genes, signaling pathways, chemokines/cytokines and energy metabolism. Collectively, macrophage polarization-related differences in folate/MTX metabolism and downstream pathways at the level of pre-mRNA splicing and gene expression may account for variable accumulation of MTX-PGs, hence possibly impacting MTX treatment efficacy.

Keywords: alternative splicing; folate metabolism; folylpolyglutamate synthetase; gene expression; macrophages; methotrexate.

MeSH terms

  • Alternative Splicing
  • Folic Acid / metabolism
  • Folic Acid / pharmacology
  • Gene Expression
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics
  • Granulocyte-Macrophage Colony-Stimulating Factor / metabolism
  • Granulocyte-Macrophage Colony-Stimulating Factor / pharmacology
  • Humans
  • Macrophage Colony-Stimulating Factor / metabolism
  • Macrophages / metabolism
  • Methotrexate* / metabolism
  • Methotrexate* / pharmacology
  • Monocytes* / metabolism
  • Peptide Synthases / genetics
  • RNA Precursors / metabolism

Substances

  • Methotrexate
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • Macrophage Colony-Stimulating Factor
  • RNA Precursors
  • Folic Acid
  • Peptide Synthases