Waning vaccine-induced immunity, coupled with the emergence of SARS-CoV-2 variants, has inspired the widespread implementation of COVID-19 booster vaccinations. Here, we evaluated the potential of the GX-19N DNA vaccine as a heterologous booster to enhance the protective immune response to SARS-CoV-2 in mice primed with either an inactivated virus particle (VP) or an mRNA vaccine. We found that in the VP-primed condition, GX-19N enhanced the response of both vaccine-specific antibodies and cross-reactive T Cells to the SARS-CoV-2 variant of concern (VOC), compared to the homologous VP vaccine prime-boost. Under the mRNA-primed condition, GX-19N induced higher vaccine-induced T Cell responses but lower antibody responses than the homologous mRNA vaccine prime-boost. Furthermore, the heterologous GX-19N boost induced higher S-specific polyfunctional CD4+ and CD8+ T cell responses than the homologous VP or mRNA prime-boost vaccinations. Our results provide new insights into booster vaccination strategies for the management of novel COVID-19 variants.
Keywords: COVID-19; DNA vaccine; SARS-CoV-2; mRNA vaccine.