In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor

Molecules. 2023 May 24;28(11):4307. doi: 10.3390/molecules28114307.

Abstract

A one-step sulfurization method to fabricate Ni3S2 nanowires (Ni3S2 NWs) directly on a Ni foam (NF) was developed as a simple, low-cost synthesis method for use as a supercapacitor (SC), aimed at optimizing energy storage. Ni3S2 NWs have high specific capacity and are considered a promising electrode material for SCs; however, their poor electrical conductivity and low chemical stability limit their applications. In this study, highly hierarchical three-dimensional porous Ni3S2 NWs were grown directly on NF by a hydrothermal method. The feasibility of the use of Ni3S2/NF as a binder-free electrode for achieving high-performance SCs was examined. Ni3S2/NF exhibited a high specific capacity (255.3 mAh g-1 at a current density of 3 A g-1), good rate capability (2.9 times higher than that of the NiO/NF electrode), and competitive cycling performance (capacity retention of specific capacity of 72.17% after 5000 cycles at current density of 20 A g-1). Owing to its simple synthesis process and excellent performance as an electrode material for SCs, the developed multipurpose Ni3S2 NWs electrode is expected to be a promising electrode for SC applications. Furthermore, the synthesis method of self-growing Ni3S2 NW electrodes on 3D NF via hydrothermal reactions could potentially be applied to the fabrication of SC electrodes using a variety of other transition metal compounds.

Keywords: crystal growth; nickel sulfide; porous materials; supercapacitor.

MeSH terms

  • Electric Conductivity
  • Electric Power Supplies*
  • Electrodes
  • Porosity

Substances

  • nickel sulfide

Grants and funding

We appreciate support from the National Natural Science Foundation of China (51772077), the China Postdoctoral Science Foundation (2019M652537), the Henan Postdoctoral Foundation (19030065), the Henan Province Key Science and Technology Research Projects (202102310628), the Foundation of Henan Educational Committee (20B430006), and the Doctoral Fund Project of Henan Polytechnic University (B2019-41).