Machine learning enhances prediction of plants as potential sources of antimalarials

Front Plant Sci. 2023 May 25:14:1173328. doi: 10.3389/fpls.2023.1173328. eCollection 2023.

Abstract

Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families - Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) - and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms - Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks - and compare these to two ethnobotanical selection approaches - based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best - attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.

Keywords: antiplasmodial activity; botany; ethnobotany; ethnopharmacology; machine learning; malaria; sampling bias; traditional and indigenous knowledge.

Grants and funding

The authors would like to thank the individuals who have generously funded this project. DS received funding from the Swiss National Science Foundation (PCEFP3_187012) and the Swedish Research Council (VR: 2019-04739). DS and AA acknowledge funding from the Swedish Foundation for Strategic Environmental Research MISTRA within the framework of the research programme BIOPATH (F 2022/1448). AA further acknowledges financial support from the Swedish Research Council (2019-05191) and the Royal Botanic Gardens, Kew.