Ischemia/reperfusion injury (IRI) is a common cause of kidney damage, characterized by oxidative stress and inflammation. In this study, we investigated the potential protective effects of IAXO-102, a chemical compound, on experimentally induced IRI in male rats. The bilateral renal IRI model was used, with 24 adult male rats randomly divided into four groups (N=6): sham group (laparotomy without IRI induction), control group (laparotomy plus bilateral IRI for 30 minutes followed by 2 hours of reperfusion), vehicle group (same as control but pre-injected with the vehicle), and treatment group (similar to control but pre-injected with IAXO-102). We measured several biomarkers involved in IRI pathophysiology using enzyme-linked immunosorbent assay (ELISA), including High mobility group box1 (HMGB1), nuclear factor kappa b-p65 (NF-κB p65), interleukin beta-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 8-isoprostane, Bcl-2 associated X protein (BAX), heat shock protein 27 (HSP27), and Bcl-2. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests. Our results showed that IAXO-102 significantly improved kidney function, reduced histological alterations, and decreased the inflammatory response (IL-1, IL-6, and TNF) caused by IRI. IAXO-102 also decreased apoptosis by reducing pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 without impacting HSP27. In conclusion, our findings suggest that IAXO-102 had a significant protective effect against IRI damage in the kidneys.
Keywords: Bcl-2 HSP27; IAXO-102; IL-1 – Interleukin-1; IL-1β; IL-6; IL-6 – Interleukin-6; IRI – Ischemia/Reperfusion Injury; TNF-α – Tumor Necrosis Factor alpha; TNFα; ischemia-reperfusion injury; ischemic stroke (IS).
©2023 JOURNAL of MEDICINE and LIFE.