Cik1 and Vik1 accessory proteins confer distinct functions to the kinesin-14 Kar3

J Cell Sci. 2023 Jun 1;136(11):jcs260621. doi: 10.1242/jcs.260621. Epub 2023 Jun 13.

Abstract

The budding yeast Saccharomyces cerevisiae has a closed mitosis in which the mitotic spindle and the cytoplasmic microtubules (MTs), both of which generate forces to faithfully segregate chromosomes, remain separated by the nuclear envelope throughout the cell cycle. Kar3, the yeast kinesin-14, has distinct functions on MTs in each compartment. Here, we show that two proteins, Cik1 and Vik1, which form heterodimers with Kar3, regulate its localization and function within the cell, and along MTs in a cell cycle-dependent manner. Using a yeast MT dynamics reconstitution assay in lysates from cell cycle-synchronized cells, we found that Kar3-Vik1 induces MT catastrophes in S phase and metaphase, and limits MT polymerization in G1 and anaphase. In contrast, Kar3-Cik1 promotes catastrophes and pauses in G1, while increasing catastrophes in metaphase and anaphase. Adapting this assay to track MT motor protein motility, we observed that Cik1 is necessary for Kar3 to track MT plus-ends in S phase and metaphase but, surprisingly, not during anaphase. These experiments demonstrate how the binding partners of Kar3 modulate its diverse functions both spatially and temporally.

Keywords: Cell cycle; Kar3; Kinesin-14; Microtubules; Reconstitution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Anaphase
  • Cell Cycle
  • Kinesins* / genetics
  • Metaphase
  • Saccharomyces cerevisiae*

Substances

  • Kinesins