Chronic activation of inflammatory pathways (CI) and mitochondrial dysfunction are independently linked to age-related functional decline and early mortality. Interleukin 6 (IL-6) is among the most consistently elevated chronic activation of inflammatory pathways markers, but whether IL-6 plays a causative role in this mitochondrial dysfunction and physical deterioration remains unclear. To characterize the role of IL-6 in age-related mitochondrial dysregulation and physical decline, we have developed an inducible human IL-6 (hIL-6) knock-in mouse (TetO-hIL-6mitoQC) that also contains a mitochondrial-quality control reporter. Six weeks of hIL-6 induction resulted in upregulation of proinflammatory markers, cell proliferation and metabolic pathways, and dysregulated energy utilization. Decreased grip strength, increased falls off the treadmill, and increased frailty index were also observed. Further characterization of skeletal muscles postinduction revealed an increase in mitophagy, downregulation of mitochondrial biogenesis genes, and an overall decrease in total mitochondrial numbers. This study highlights the contribution of IL-6 to mitochondrial dysregulation and supports a causal role of hIL-6 in physical decline and frailty.
Keywords: Inflammation; Mitochondria dysregulation; Physical decline.
© The Author(s) 2023. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].