Ferroptosis is a form of cell death that is regulated by iron and characterized by the buildup of lipid peroxides (LPO) and subsequent rupture of the cell membrane. The molecular mechanisms of ferroptosis involve metabolic pathways related to iron, lipids, and amino acids, which contribute to the production of lipid reactive oxygen species (ROS). In recent years, there has been increasing attention on the occurrence of ferroptosis in various diseases. Ferroptosis has been found to play a crucial role in cardiovascular diseases, digestive diseases, respiratory and immunological diseases, and particularly in malignancies. However, there is still a lack of studies on ferroptosis in acute myeloid leukemia (AML). This paper provides a comprehensive review of the mechanism of ferroptosis and its regulatory molecules and therapeutic agents in AML. It also evaluates the relationship between ferroptosis-related genes (FRGs), non-coding RNAs (ncRNAs), and prognosis to develop prognostic molecular models in AML. The study also explores the association between ferroptosis and immune infiltration in AML, to identify novel potential target regimens for AML.
Keywords: Acute myeloid leukemia; Ferroptosis; LPO; Therapeutic targets.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.