High-level studies of the singlet states of quadricyclane, including analysis of a new experimental vacuum ultraviolet absorption spectrum by configuration interaction and density functional calculations

J Chem Phys. 2023 Jun 21;158(23):234303. doi: 10.1063/5.0151758.

Abstract

A synchrotron-based vacuum ultraviolet absorption spectrum (VUV) of quadricyclane (QC) is reported with energies up to 10.8 eV. Extensive vibrational structure has been extracted from the broad maxima by fitting short energy ranges of the VUV spectrum to high level polynomial functions and processing the regular residuals. Comparison of these data with our recent high-resolution photoelectron spectral of QC showed that this structure must be attributed to Rydberg states (RS). Several of these appear before the valence states at higher energies. Both types of states have been calculated by configuration interaction, including symmetry-adapted cluster studies (SAC-CI) and time dependent density functional theoretical methods (TDDFT). There is a close correlation between the SAC-CI vertical excitation energies (VEE) and both Becke 3-parameter hybrid functional (B3LYP), especially Coulomb-attenuating method-B3LYP determined ones. The VEE for several low-lying s-, p, d-, and f-RS have been determined by SAC-CI and adiabatic excitation energies by TDDFT methods. Searches for equilibrium structures for 11,3A2 and 11B1 states for QC led to rearrangement to a norbornadiene structure. Determination of the experimental 00 band positions, which show extremely low cross-sections, has been assisted by matching features in the spectra with Franck-Condon (FC) fits. Herzberg-Teller (HT) vibrational profiles for the RS are more intense than the FC ones, but only at high energy, and are attributed to up to ten quanta. The vibrational fine structure of the RS calculated by both FC and HT procedures gives an easy route to generating HT profiles for ionic states, which usually require non-standard procedures.