Electroshock synthesis of a bifunctional nonprecious multi-element alloy for alkaline hydrogen oxidation and evolution

Exploration (Beijing). 2022 Nov 24;2(6):20220024. doi: 10.1002/EXP.20220024. eCollection 2022 Dec.

Abstract

The design and production of active, durable, and nonprecious electrocatalysts toward alkaline hydrogen oxidation and evolution reactions (HOR/HER) are extremely appealing for the implementation of hydrogen economy, but remain challenging. Here, we report a facile electric shock synthesis of an efficient, stable, and inexpensive NiCoCuMoW multi-element alloy on Ni foam (NiCoCuMoW) as a bifunctional electrocatalyst for both HOR and HER. For the HOR, the current density of NiCoCuMoW could reach ∼11.2 mA cm-2 when the overpotential is 100 mV, higher than that for commercial Pt/C (∼7.2 mA cm-2) and control alloy samples with less elements, along with superior CO tolerance. Moreover, for the HER, the overpotential at 10 mA cm-2 for NiCoCuMoW is only 21 mV, along with a Tafel slope of low to 63.7 mV dec-1, rivaling the commercial Pt/C as well (35 mV and 109.7 mV dec-1). Density functional theory calculations indicate that alloying Ni, Co, Cu, Mo, and W can tune the electronic structure of individual metals and provide multiple active sites to optimize the hydrogen and hydroxyl intermediates adsorption, collaboratively resulting in enhanced electrocatalytic activity.

Keywords: H2 evolution; H2 oxidation; electrocatalysis; electroshock; multi‐element alloy.