Optically Induced Multistage Phase Transition in Coherent Phonon-Dominated a-GeTe

J Phys Chem Lett. 2023 Jun 29;14(25):5760-5767. doi: 10.1021/acs.jpclett.3c01173. Epub 2023 Jun 16.

Abstract

Ultrafast photoexcitation can decouple the multilevel nonequilibrium dynamics of electron-lattice interactions, providing an ideal probe for dissecting photoinduced phase transition in solids. Here, real-time time-dependent density functional theory simulations combined with occupation-constrained DFT methods are employed to explore the nonadiabatic paths of optically excited a-GeTe. Results show that the short-wavelength ultrafast laser is capable of generating full-domain carrier excitation and repopulation, whereas the long-wavelength ultrafast laser favors the excitation of lone pair electrons in the antibonded state. Photodoping makes the double-valley potential energy surface shallower and allows the insertion of A1g coherent forces in the atomic pairs, by which the phase reversal of Ge and Te atoms in the ⟨001⟩ direction is activated with ultrafast suppression of the Peierls distortion. These findings have far-reaching implications regarding nonequilibrium phase engineering strategies based on phase-change materials.