Observation of fast sound in two-dimensional dusty plasma liquids

Phys Rev E. 2023 May;107(5-2):055211. doi: 10.1103/PhysRevE.107.055211.

Abstract

Equilibrium molecular dynamics simulations are performed to study two-dimensional (2D) dusty plasma liquids. Based on the stochastic thermal motion of simulated particles, the longitudinal and transverse phonon spectra are calculated, and used to determine the corresponding dispersion relations. From there, the longitudinal and transverse sound speeds of 2D dusty plasma liquids are obtained. It is discovered that, for wavenumbers beyond the hydrodynamic regime, the longitudinal sound speed of a 2D dusty plasma liquid exceeds its adiabatic value, i.e., the so-called fast sound. This phenomenon appears at roughly the same length scale of the cutoff wavenumber for transverse waves, confirming its relation to the emergent solidity of liquids in the nonhydrodynamic regime. Using the thermodynamic and transport coefficients extracted from the previous studies, and relying on the Frenkel theory, the ratio of the longitudinal to the adiabatic sound speeds is derived analytically, providing the optimal conditions for fast sound, which are in quantitative agreement with the current simulation results.

MeSH terms

  • Dust*
  • Molecular Dynamics Simulation
  • Motion
  • Sound*
  • Thermodynamics

Substances

  • Dust