Spatial distribution and risk assessment of heavy metals in the coastal waters of the Gulf of Suez, Red Sea, Egypt

Mar Pollut Bull. 2023 Aug:193:115122. doi: 10.1016/j.marpolbul.2023.115122. Epub 2023 Jun 15.

Abstract

To assess ecological and health risks connected with heavy metal contamination in the Gulf of Suez, Red Sea seawater during winter 2021. The selected heavy metals were detected using the "AAS" Technique. The results presented that; the average metal concentrations ranged between (0.57, 1.47, 0.76, 5.44, 0.95, 18.79, and 1.90 μg/l) for Cd, Pb, Zn, Mn, Fe, Cu, and Ni along the investigated area. Pollution Index for overall Gulf sectors <1, indicating a slightly and moderately affected region. Metal Index for the Gulf is >1, representing the existence of heavy metal pollution, which is alarming in this area. (HPI) Heavy metal pollution index <100 indicates low contamination of heavy metal "and is apposite for consumption. The Gulf's ecological risk index (Eri) mostly fell under the low-ecological risk. The risk health estimation revealed that CDI values for carcinogenic were (10-5 to10-7), (10-6 to10-8), and (10-9 to10-11) for ingestion, dermal, and inhalation, respectively. Ingestion for children is twice as high as the proportions documented for adults. At the same time, THQ values for non-carcinogenic ingestion, dermal, and inhalation were (10-5 to 10-8), (10-4 to 10-5), and (10-10 to 10-12), respectively. Also, the total hazard quotient (THQ ing. + THQ inh.) values were <1 acceptable limit, indicating no non-carcinogenic risk to the residents through dermal adsorption and oral water intake. The ingestion pathway was the main pathway for total risk. In conclusion, the overall hazard risks are lower than the permissible limit of <1 regarding heavy metals.

Keywords: Ecological risk; Health risk; Heavy metal; Pollution index; Seawater; The Gulf of Suez and Red Sea.

MeSH terms

  • Adult
  • Child
  • China
  • Egypt
  • Environmental Monitoring*
  • Humans
  • Indian Ocean
  • Metals, Heavy* / analysis
  • Risk Assessment

Substances

  • Metals, Heavy