Purpose: This study aimed to assess repeatability after repositioning (inter-scan), intra-rater, inter-rater and inter-sequence variability of mean apparent diffusion coefficient (ADC) measurements in MRI-detected prostate lesions.
Method: Forty-three patients with suspicion for prostate cancer were included and received a clinical prostate bi-/multiparametric MRI examination with repeat scans of the T2-weighted and two DWI-weighted sequences (ssEPI and rsEPI). Two raters (R1 and R2) performed single-slice, 2D regions of interest (2D-ROIs) and 3D-segmentation-ROIs (3D-ROIs). Mean bias, corresponding limits of agreement (LoA), mean absolute difference, within-subject coefficient of variation (CoV) and repeatability/reproducibility coefficient (RC/RDC) were calculated. Bradley & Blackwood test was used for variance comparison. Linear mixed models (LMM) were used to account for multiple lesions per patient.
Results: Inter-scan repeatability, intra-rater and inter-sequence reproducibility analysis of ADC showed no significant bias. 3D-ROIs demonstrated significantly less variability than 2D-ROIs (p < 0.01). Inter-rater comparison demonstrated small significant systematic bias of 57 × 10-6 mm2/s for 3D-ROIs (p < 0.001). Intra-rater RC, with the lowest variation, was 145 and 189 × 10-6 mm2/s for 3D- and 2D-ROIs, respectively. For 3D-ROIs of ssEPI, RCs and RDCs were 190-198 × 10-6 mm2/s for inter-scan, inter-rater and inter-sequence variation. No significant differences were found for inter-scan, inter-rater and inter-sequence variability.
Conclusions: In a single-scanner setting, single-slice ADC measurements showed considerable variation, which may be lowered using 3D-ROIs. For 3D-ROIs, we propose a cut-off of ∼ 200 × 10-6 mm2/s for differences introduced by repositioning, rater or sequence effects. The results suggest that follow-up measurements should be possible by different raters or sequences.
Keywords: ADC; Apparent diffusion coefficient; Prostate; Repeatability; Reproducibility; Retest; Stability; Test.
Copyright © 2023 Elsevier B.V. All rights reserved.