Background: High-protein diets not only meet amino acid needs but also modulate satiety and energy metabolism. Insect-based proteins are sustainable, high-quality proteins. Mealworms have been studied, but limited information is known about their ability to impact metabolism and obesity.
Objective: We determined the effects of defatted yellow mealworm (Tenebrio molitor)- and whole lesser mealworm (Alphitobius diaperinus)-based proteins on the body weight (BW), serum metabolites, and liver and adipose tissue (AT) histology and gene expression of diet-induced obesity mice.
Methods: Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity and metabolic syndrome. Obese mice were then assigned to treatments (n = 10/group) and fed for 8 wk: HFD: HFD with casein protein; B50: HFD with 50% protein from whole lesser mealworm; B100: HFD with 100% protein from whole lesser mealworm; Y50: HFD with 50% protein from defatted yellow mealworm; Y100: HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (LFD; 10% kcal) were included. Longitudinal food intake, BW, body composition, and glucose response were measured. At time of killing, serum metabolites, tissue histopathology and gene expression, and hepatic triglycerides were analyzed.
Results: After 8 wk, HFD, B50, and B100 had greater (P < 0.05) weight gain than LFD, whereas Y50 and Y100 did not. Y50, B100, and Y100 had a lower (P < 0.05) BW change rate than HFD. Mealworm-based diets led to increased (P < 0.05) serum high-density lipoprotein (HDL) and reduced (P < 0.05) serum low-density lipoprotein (LDL) concentrations and reduced (P<0.05) LDL/HDL ratio. Mealworm-based diets led to increased (P < 0.05) hepatic expression of genes related to energy balance, immune response, and antioxidants and reduced (P < 0.05) AT expression of genes associated with inflammation and apoptosis. Mealworm-based diets altered (P < 0.05) hepatic and AT expression of glucose and lipid metabolism genes.
Conclusions: In addition to serving as an alternative protein source, mealworms may confer health benefits to obese patients.
Keywords: alternative protein; insect protein; lipid metabolism; metabolic syndrome; obese mice.
Copyright © 2023 American Society for Nutrition. Published by Elsevier Inc. All rights reserved.