Revealing tumor microstructure with oscillating diffusion encoding MRI in pre-surgical and post-treatment glioma patients

Magn Reson Med. 2023 Nov;90(5):1789-1801. doi: 10.1002/mrm.29758. Epub 2023 Jun 19.

Abstract

Purpose: We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients.

Theory and methods: Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system. OGSE diffusion MRI at 30-100 Hz and pulsed gradient spin echo diffusion imaging (approximated as 0 Hz) were obtained. The ADC and trace-diffusion-weighted image at each acquired frequency were calculated, that is, ADC (f) and TraceDWI (f).

Results: In pre-surgical patients, biopsy-confirmed solid enhancing tumor in a high-grade glioblastoma showed higher ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lower TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ (f)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , compared to that at same OGSE frequency in a low-grade astrocytoma. In post-treatment patients, the enhancing lesions of two patients who were diagnosed with tumor progression contained more voxels with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\left(\mathrm{f}\right)}{\mathrm{TraceDWI}\left(0\ \mathrm{Hz}\right)} $$ , compared to the enhancing lesions of a patient who was diagnosed with treatment effect. Non-enhancing T2 signal abnormality lesions in both the pre-surgical high-grade glioblastoma and post-treatment tumor progressions showed regions with high ADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and low TraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ \left(\mathrm{f}\right)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , consistent with infiltrative tumor. The solid tumor of the glioblastoma, the enhancing lesions of post-treatment tumor progressions, and the suspected infiltrative tumors showed high diffusion time-dependency from 30 to 100 Hz, consistent with high intra-tumoral volume fraction (cellular density).

Conclusion: Different characteristics of OGSE-based time-dependent diffusivity can reveal heterogenous tissue microstructures that indicate cellular density in glioma patients.

Keywords: glioma; high gradient; microstructure; oscillating gradient; time-dependent diffusion.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Diffusion
  • Diffusion Magnetic Resonance Imaging / methods
  • Glioblastoma* / diagnostic imaging
  • Glioblastoma* / surgery
  • Glioma* / diagnostic imaging
  • Humans
  • Image Interpretation, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods