Purpose: Accurate assessment of dural sinus, deep and cortical venous thrombosis on MR imaging is challenging. The aim of this study is to evaluate the accuracy of 3D-T1 turbo spin echo (T1S), sequences in detecting venous thrombosis and comparing it with susceptibility-weighted imaging (SWI), magnetic resonance venography (MRV) and post contrast T1 magnetization-prepared rapid acquisition gradient echo (T1C).
Methods: A blinded retrospective observational analysis of 71 consecutive patients evaluated for cerebral venous thrombosis (CVT) and 30 control patients was performed. Multimodality reference standard adopted included T1C, SWI with MRV. Sub-analyses in superficial, deep and cortical venous segments were performed in addition to correlation of signal intensity of thrombus with the clinical stage.
Results: A total of 2222 segments in 101 complete MRI examinations were evaluated. Sensitivity/specificity/positive predictive value/negative predictive value/accuracy and precision of T1S for detection of cortical vein thrombosis was 0.994/1/1/0.967/0.995/1, 1/0.874/0.949/1/0.963/0.950 for detection of superficial venous sinus thrombosis and 1/1/1/1/1/1 for deep venous thrombosis. The AUC yield for T1S was 0.997 for cortical, 1 for deep and 0.988 for superficial venous segments.
Conclusion: T1S paralleled the accuracy of conventional sequences in the overall detection of CVT but showed superior accuracy in the detection of cortical venous thrombosis. It makes a fitting addition to the CVT MRI protocol in scenarios demanding negation of gadolinium administration.
Keywords: 3D T1 SPACE; 3D T1 TSE; CUBE; CVST; CVT; Cortical venous; Deep venous; Dural sinus thrombosis; MRV; Post contrast T1 MPRAGE; SWI; VISTA.
© 2023. The Author(s), under exclusive licence to American Society of Emergency Radiology (ASER).