Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated potent clinical efficacy in the treatment of hematopoietic malignancies. However, the application of CAR-T in solid tumors has been limited due in part to the expression of inhibitory molecules in the tumor microenvironment, leading to T-cell exhaustion. To overcome this limitation, we have developed a synthetic T-cell receptor (TCR) that targets programmed death-ligand 1 (PD-L1), a molecule that is widely expressed in various solid tumors and plays a pivotal role in T-cell exhaustion. Our novel TCR platform is based on antibody-based binding domain, which is typically a single-chain variable fragment (scFv), fused to the γδ TCRs (TCRγδ). We have utilized the T-cell receptor alpha constant (TRAC) locus editing approach to express cell surface scFv of anti-PD-L1, which is fused to the constant region of the TCRγ or TCRδ chain in activated T cells derived from peripheral blood mononuclear cells (PBMCs). Our results indicate that these reconfigured receptors, both γ-TCRγδ and δ-TCRγδ, have the capability to transduce signals, produce inflammatory cytokines, degranulate and exert tumor killing activity upon engagement with PD-L1 antigen in vitro. Additionally, we have also shown that γ-TCRγδ exerted superior efficacy than δ-TCRγδ in in vivo xenograft model.
© 2023. The Author(s).