Generation of a C. elegans tdp-1 null allele and humanized TARDBP containing human disease-variants

MicroPubl Biol. 2023 Jun 6:2023:10.17912/micropub.biology.000693. doi: 10.17912/micropub.biology.000693. eCollection 2023.

Abstract

Clinical variants of TARDBP are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and other degenerative diseases. The predicted C. elegans ortholog of TARDBP is encoded by tdp-1 , but functional orthology has not been demonstrated in vivo. We undertook CRISPR/Cas9-based genome editing of the tdp-1 locus to create a complete loss of function allele; all tdp-1 exons and introns were deleted, creating tdp-1(tgx58) , which resulted in neurodegeneration after oxidative stress. Next, we undertook CRISPR-based genome editing to replace tdp-1 exons with human TARDBP coding sequences, creating humanized ( hTARDBP ) C. elegans expressing TDP-43 . Based on the efficiency of this genome editing, we suggest that iterative genome editing of the tdp-1 target locus using linked coCRISPR markers, like dpy-10 , would be a more efficient strategy for sequential assembly of the large engineered transgenes. hTARDBP decreased the neurodegeneration defect of tdp-1(tgx58) , demonstrating functional cross-species orthology. To develop C. elegans models of FTD and ALS, we inserted five different patient TARDBP variants in the C. elegans hTARDBP locus. Only one clinical variant increased stress-induced neurodegeneration; other variants caused inconsistent or negligible defects under these conditions. Combined, this work yielded an unambiguous null allele for tdp-1 , a validated, humanized hTARDBP, and multiple ALS/FTD patient-associated variant models that can be used for future studies.