Beyond Mor: Can Induction of Dopamine Homeostasis Along with Electrotherapy Attenuate the Opioid Crisis?

Clin Exp Psychol. 2023 Mar 2;9(2):1-3.

Abstract

One important area for consideration especially in terms of combating the ongoing never ending opioid crisis, relates to novel newer assessments for all addictive behaviors both substance and non-substance behaviors (RDS). It is very important to identify early in one's life the possibility of, because of known DNA antecedents, the presence of pre-addiction. The development of the Genetic Addiction Risk Severity (GARS) test, Blum's group believes that this type of testing should be the "standard of care" following additional studies. Understandably that while polymorphisms in the Mu-Opioid receptor (MOR) is of real concern in terms of setting people up for predisposition to opioid dependence, the genetic and epigenetic status of dopaminergic function must be considered as well. While this sounds bold (which it is) the results should be protected by the G.I. N. A. law enacted in the USA in 2011. One avenue of further investigation, instead of providing powerful opioids for opioid dependence, is to seek out non-addictive alternatives. Accordingly, other non-addictive modalities including genetic guided KB220 (amino-acid-enkephalinase-N-acetylcysteine-NAD), non-invasive rTMS for psychiatry and pain, epigenetic remodeling, gene edits, non-invasive H-wave for pain management and enhanced functionality, brain spotting, cognitive behavioral therapy awarenesss integration therapy, NUCALM, trauma therapy, awareness tools, genograms, exercise, sports, fitness programs (one hour per day), light therapy and even laughing therapy as well as any other known modalities that can induce reward symmetry. While the short term use of opioids for opioid dependence to reduce harm is certainly acceptable, clinicians should consider a better long-term plan.

Keywords: Dopaminergic; Genetic Addiction Risk Severity (GARS); H-Wave; KB220; NuCalm; Opioid crisis; Reward Deficiency Syndrome(RDS).