Cancer cells produce abnormal levels of reactive oxygen species (ROS) that contribute to promote their malignant phenotype. In this framework, we hypothesized that the change in ROS concentration above threshold could impair key events of prostate cancer cells (PC-3) progression. Our results demonstrated that Pollonein-LAAO, a new L-amino acid oxidase obtained from Bothrops moojeni venom, was cytotoxic to PC-3 cells in two-dimensional and in tumor spheroid assays. Pollonein-LAAO was able to increase the intracellular ROS generation that culminates in cell death from apoptosis by both intrinsic and extrinsic pathways due to the up-regulation of TP53, BAX, BAD, TNFRSF10B and CASP8. Additionally, Pollonein-LAAO reduced mitochondrial membrane potential and caused G0/G1 phase to delay, due to the up-regulation of CDKN1A and the down-regulation of the expression of CDK2 and E2F. Interestingly, Pollonein-LAAO inhibited critical steps of the cellular invasion process (migration, invasion and adhesion), due to the down-regulation of SNAI1, VIM, MMP2, ITGA2, ITGAV and ITGB3. Furthermore, the Pollonein-LAAO effects were associated with the intracellular ROS production, since the presence of catalase restored the invasiveness of PC-3 cells. In this sense, this study contributes to the potential use of Pollonein-LAAO as ROS-based agent to enhance the current understanding of cancer treatment strategies.
Keywords: Apoptosis; Cell cycle arrest; Epithelial-mesenquimal transition; ROS; Snake venom L-amino acid oxidase.
Copyright © 2023 Elsevier Inc. All rights reserved.