Macroscopic spatial patterns were formed in calcium alginate gels when a drop of a calcium nitrate solution was placed on the center of a sodium alginate solution on a petri dish. These patterns have been classified into two groups. One is multi-concentric rings consisting of alternating cloudy and transparent areas observed around the center of petri dishes. The other is streaks extending to the edge of the petri dish, which are formed to surround the concentric bands between the concentric bands and the petri dish edge. We have attempted to understand the origins of the pattern formations using the properties of phase separation and gelation. The distance between two adjacent concentric rings was roughly proportional to the distance from where the calcium nitrate solution was dropped. The proportional factor p increased exponentially for the inverse of the absolute temperature of the preparation. The p also depended on the concentration of alginate. The pattern characteristics in the concentric pattern agreed with those in the Liesegang pattern. The paths of radial streaks were disturbed at high temperatures. The length of these streaks shortened with increasing alginate concentration. The characteristics of the streaks were similar to those of crack patterns resulting from inhomogeneous shrinkage during drying.
Keywords: Liesegang phenomenon; alginate gel; gelation; pattern formation; phase separation.