Hollow collagen gels are promising materials for drug/cell delivery systems to promote tissue regeneration because they may be able to function as carriers for these types of loads. Controlling the cavity size and swelling suppression is essential to expand the applications and improve the usability of such gel-like systems. We investigated the effects of UV-treated collagen solutions as a pre-gel aqueous mixture on the formation and properties of the hollow collagen gels in terms of their preparation range limits, morphology, and swelling ratio. The UV treatment thickened the pre-gel solutions, which allowed hollowing at lower collagen concentrations. This treatment also prevents the over-swelling of the hollow collagen rods in PBS buffer solutions. The UV-treated collagen solutions provided a large lumen space in the prepared collagen hollow fiber rods with a limited swelling ratio, allowing vascular endothelial cells and ectodermal cells to be cultured separately in the outer and inner lumen.
Keywords: collagen; hollow structure; photo-cross-linking; pre-gel solution; ultraviolet light modification.