Aedes aegypti is the principal vector of the arboviruses-yellow fever, dengue virus, chikungunya, and zika virus. Given the epidemiological importance of this mosquito, its capacity to adapt to different habitats, and its resistance to many types of control measures, systematic research into the genetic variability of the populations of this mosquito is one of the most important steps toward a better understanding of its population structure and vector competence. In this context, the present study verified the presence of distinct genetic lineages of Ae. aegypti in areas with high infestation rates, based on the analysis of microsatellite markers. The samples were collected in nine municipalities with high building infestation rates in the Mid-North region of Brazil. Six microsatellite loci were genotyped in the 138 samples, producing a total of 32 alleles, varying from one to nine alleles per locus in each of the different populations. The AMOVA revealed greater within-population genetic differentiation with high fixation rates. The general analysis of population structure, based on a Bayesian approach, revealed K = 2, with two Ae. aegypti lineages that were highly differentiated genetically. These data on the connectivity of the populations and the genetic isolation of the lineages provide important insights for the development of innovative strategies for the control of the populations of this important disease vector.
Keywords: dengue fever vector; genetic diversity; microsatellites.