Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine

J Fungi (Basel). 2023 May 25;9(6):607. doi: 10.3390/jof9060607.

Abstract

Amphibians are the most threatened group of vertebrates. While habitat loss poses the greatest threat to amphibians, a spreading fungal disease caused by Batrachochytrium dendrobatidis Longcore, Pessier & D.K. Nichols 1999 (Bd) is seriously affecting an increasing number of species. Although Bd is widely prevalent, there are identifiable heterogeneities in the pathogen's distribution that are linked to environmental parameters. Our objective was to identify conditions that affect the geographic distribution of this pathogen using species distribution models (SDMs) with a special focus on Eastern Europe. SDMs can help identify hotspots for future outbreaks of Bd but perhaps more importantly identify locations that may be environmental refuges ("coldspots") from infection. In general, climate is considered a major factor driving amphibian disease dynamics, but temperature in particular has received increased attention. Here, 42 environmental raster layers containing data on climate, soil, and human impact were used. The mean annual temperature range (or 'continentality') was found to have the strongest constraint on the geographic distribution of this pathogen. The modeling allowed to distinguish presumable locations that may be environmental refuges from infection and set up a framework to guide future search (sampling) of chytridiomycosis in Eastern Europe.

Keywords: GIS modeling; amphibia; fungal diseases; infection; pathogen; species distribution modelling; spreading.

Grants and funding

This study was partly supported by Latvian Council of Science project “Ecological and socioeconomic thresholds as a basis for defining adaptive management triggers in Latvian pond aquaculture” (lzp-2021/1-0247) and the project “Modern risks of degradation of ecosystems of Ukraine on the example of model zoocenoses: analysis of factors in terms of biological safety” (project #0122U000708).